A sequential logistic regression classifier based on mixed effects with applications to longitudinal data
نویسندگان
چکیده
Making an early classification in longitudinal data is highly desirable. For this purpose, a sequential classifier that incorporates a neutral zone framework is proposed. The classification procedure evaluates each subject sequentially at each longitudinal time point. If there is not adequate confidence in making a classification at a given time point, the decision will wait until the next time point where another measurement is collected. This process continues until there is enough confidence of making a classification or until the last time point where data can be collected is reached. It is demonstrated that the proposed sequential classifiermaintains competitive error rateswhile reducing the overall costwhen the cost of time is taken into account. The classifier is applied to a real example of identifying patients that are vulnerable to kidney dysfunction on the basis of up to 7 blood draws sequentially taken from each patient. © 2015 Elsevier B.V. All rights reserved.
منابع مشابه
Conditional Dependence in Longitudinal Data Analysis
Mixed models are widely used to analyze longitudinal data. In their conventional formulation as linear mixed models (LMMs) and generalized LMMs (GLMMs), a commonly indispensable assumption in settings involving longitudinal non-Gaussian data is that the longitudinal observations from subjects are conditionally independent, given subject-specific random effects. Although conventional Gaussian...
متن کاملMatrix Sequential Hybrid Credit Scorecard Based on Logistic Regression and Clustering
The Basel II Accord pointed out benefits of credit risk management through internal models to estimate Probability of Default (PD). Banks use default predictions to estimate the loan applicants’ PD. However, in practice, PD is not useful and banks applied credit scorecards for their decision making process. Also the competitive pressures in lending industry forced banks to use profit scorecards...
متن کاملDetermining the factors related to diabetes type II with mixed logistic regression
Background and aims: Diabetes type II (non-insulin dependent) which is one of the most prevalent diabetes types in the world emerges in people with the age of above 55 and genetic and environmental factors interfere in this disease. The aim of this study was to determine the factors affecting diabetes type II with generalized mixed linear model. Methods: ...
متن کاملTransition Models for Analyzing Longitudinal Data with Bivariate Mixed Ordinal and Nominal Responses
In many longitudinal studies, nominal and ordinal mixed bivariate responses are measured. In these studies, the aim is to investigate the effects of explanatory variables on these time-related responses. A regression analysis for these types of data must allow for the correlation among responses during the time. To analyze such ordinal-nominal responses, using a proposed weighting approach, an ...
متن کاملBayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data
Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 94 شماره
صفحات -
تاریخ انتشار 2016